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New Look at Gleason’s Theorem for Signed Measures

Anatolij Dvureéenskij'

Received October 21, 1986

It is shown that the Gleason theorem holds not only for a finite but also for an
n-finite signed measure m, where n is a cardinal, defined on all closed subspaces
of a Hilbert space whose dimension is a nonmeasurable cardinal #2, if m is
bounded from below on all one-dimensional subspaces.

1. INTRODUCTION AND PRELIMINARIES

In the quantum logic approach to the axiomatic foundation of quantum
mechanics an important role is played by the quantum logic £(H) of all
closed subspaces of a (not necessarily separable) Hilbert space H over the
field C of real or complex numbers. A signed measure on Z(H) is a function
m: $(H)->[—oc0,c0] such that (1) m(0)=0; (2) m is o-additive on all
sequences of mutually orthogonal elements of #(H); (3) from the possible
value 00 it attains at most one. A signed measure m is bounded if
sup{|m(M)|: M < H} <. A positive signed measure is said to be a measure.
The famous theorem of Gleason (1957) says that any finite measure m on
a separable Hilbert space H, dim H # 2, is in one-to-one correspondence
with positive Hermitian operators T on H of finite trace via

m(M)=tr(TM), Me Z(H) (1)

(we identify a subspace M with the orthoprojector P™ on it).

Sherstnev (1974) proved that formula (1) is also correct for all bounded,
signed measures of a separable Hilbert space H, dim H # 2. Drisch (1979)
showed that the assumption of separability is superfluous when the Hilbert
space is of nonmeasurable cardinality (for definition see below).

The situation with signed measures attaining infinite values is more
complicated and it needs the following notions. By Tr( H) we denote the
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class of all bounded operators T in H such that, for every orthonormal
basis {x,: a € A} of H, the series ). ,_, (Tx,, x,} converges and is indepen-
dent of the basis used; the expression tr T=3 _, (Tx,, x,) is called the
trace of T.

A bilinear form is a function t: D(t) X D(t}-> C [ D(t) is a submanifold
of H, not necessarily dense or closed in H, named the domain of definition
of t], such that ¢ is linear in both arguments, and t(ax, By) = aBt(x, y),
x,y€ D(t), a, Be C. A bilinear form ¢ is said to be symmetric if t(x, y)=
t(y, x) for all x, y € D(t). A symmetric bilinear form ¢ is called (1) positive
if t(x, x) = 0 for all x € D(t); and (2) semibounded if there is a finite constant
K =0 such that t(x, x)=—K for all xe D(1).

Let Pe £(H) and let P< D(t). Then by f° P we mean a symmetric
bilinear form defined by ¢t P(x, y) =t(Px, Py), x, y€ H. If t o P is induced
by a trace operator T, that is, t° P(x, y)=(Tx, y), x, y € H, then we say
to PeTr(H) and we define trte P=tr T.

A signed measure m is said to be (1) f-bounded if sup{|m(Q)|: Q<= P} <
o whenever |m(P)|<oo; (2) n-finite if there is a system of mutually
orthogonal elements {M,: a € A} such that H =®,.4 M, and |m(M,)| <
for each ae A, and the cardinal of A is n. If n=¥;, we say that m is
o-additive. Here by @ ,.; P, we mean the join of mutually orthogonal
elements P,e £(H),iel. For any 0#x<c H we denote by P, the one-
dimensional subspace of H spanned over x.

In Dvurecenskij (1985) it is proved that, for any o-finite, f~bounded
signed measure m on F(H) of a Hilbert space H whose dimension is a
nonmeasurable cardinal # 2, m( H) = oo, there is a unique symmetric bilinear
form t with a dense domain D(t) such that

m(P)={trt°P if m(P)<o 2)

elsewhere

We recall, according to Ulam (1930), that the cardinal I is nonmeasur-
able if there is no nontrivial positive measure » on the power set 2* of a
set A whose cardinal is I, such that »({a}) =0 for any a € A. It is evident
that all finite cardinals and ¥, are nonmeasurable. Assuming the continuum
hypothesis, ¢ (cardinal of reals) is a nonmeasurable cardinal.

2. FRAME FUNCTIONS

The cornerstone of the Gleason theorem is the notion of a frame
function. Denote S(H)={xe H: |x| =1}. A function f: S(H)—[—0c0, 0]
is a frame function if (1) f(Ax) =f(x) for all scalars A € C with [A|=1; (2)
there is a constant W (may be +00), named the weight of f, such that, for
any orthonormal basis {x,: a€ A} of H,Y.,_, f(x,)= W. A frame function
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f has a finiteness property if |3, f(x;)| <o, for some orthonormal system
of vectors {x;: ie I}< H, implies f|S(G) is a frame function with a finite
weight, where G=® ;.; P,.. It is evident that any frame function with a
finite weight has the finiteness property. A frame function f is regular if
there is a positive symmetric bilinear form ¢ with

D(t)={xe H: x#0, |f(x/|x|) <}u {0}

such that f(x) = t(x, x) for any xe S(H) n D(t).

Let n be a cardinal. We say that a frame function f is n-finite if there
is a system of mutually orthogonal subspaces {M,:ac I}, ®,.; M,=H,
such that f|S(M,) is a frame function with finite weight for any a € I, and
the cardinal of I is n. In particular, if n=N,, we say that f is o-finite. A
frame function f is called (1) finite if |f(x)|<co for any xe S(H); (2)
bounded if sup{|f(x)|: x € S(H)} <0; and (3) semibounded if inf{f(x): x €
S(H)}> —c0.

Let n be a cardinal. We say that a function m: ${H)->[—, 0] with
m(0) =0 and which, from the values +00, attains at most one is (1) n-additive
if, for any system of mutually orthogonal subspaces {M,: ac I}, card I =n,
we have

m(e‘aj Ma> = ZI m(M,) (3)

and is (2) totally additive if equation (3) holds for any I with an arbitrary
cardinal.

Proposition 1. Let m be a totally additive signed measure on a quantum
logic #(H) of an arbitrary Hilbert space H. Then a map f defined via

fx)=m(P), |x|=1 (4)

is a frame function with the finiteness property. Conversely, let f be a frame

function with the finiteness property; then a map m on £(H) defined via
0 if M=0
m(M) = Zf(x,-), {x;} is an orthonormal basis in M (5)

is a totally additive function. This m is unique in the sense that (4) holds.

Proof. The first part of the proposition is evident. For the second part,
we take into account that if the weight W of the frame function f is, for
example, +c0, then, for any orthonormal basis {x,, a € A} in H and for any
B#A S A Y ea, f(x,)>—c0. In fact, if, for at least one a€ A, f(x,) =0,
then ), _, f(x,)=-+co. Now suppose f(x,) # +co forany ae A;. Let K >0
be given. The weight W implies that there exists a finite B,< A such that,
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for any finite B, Bjc B A, ¥ ,_,f(x,)> K. Hence, for any finite J<
Ay, Y08, f(xa)> K. Thus
Y f(x)>K-K, (6)
JU(BonA;)

where K= 5 4 f(x,) and A, =A—A,.

Consequently, (6) implies that },,_, f(x,)# —c0.

The finiteness property of f entails that m is well defined, and m is
totally additive on Z(H). M

Proposition 2. Let 3=dim H = n <0 and let f be a frame function on
H with the finiteness property and with an infinite weight. If |f(x;)|< o,
for i=1,...,n—1, and |f(z)| <o, where x; L x; whenever i#j, then z¢
ax,++ - +a,_,x,_; for some scalars ay,..., a, € C.

Proof. The same as Corollary 2 in Dvurecenskij (1986). M

Theorem 3. Let 4=dim H <o and let f be a semibounded frame
function with the finiteness property and infinite weight. If there are three
mutually orthogonal vectors x;, X, x5 such that ¥>_ | f(x,)| <oo, then f is
a regular frame function.

Proof. Due to Proposition 2, we see that if we put
M={xeH:x#0,|f(x/|x|)|<w}u{0}

then M € £(H) and dim M =3. Proposition 1 says that f|S(M) determines
a signed measure m,, on (M) via (5). Let xe M, ||x| = 1. Then

1) = mag (M)~ % f(x) 1)

where x{, ..., x, are mutually orthonormal vectors from M and orthogonal
to x. Hence, [f(x)<|my(M)|+rK, where r=dimM -1 and K=
—inf{f(y): ye S(M)}.

We proved f|S(M) is a bounded frame function. Using the familiar
assertion on bounded finite frame functions on finite-dimensional Hilbert
space, we see that f| S(M) is a regular frame function. W

Theorem 4. Let H be a real or complex Hilbert space of dimension # 2.
Then any semibounded frame function with a finite weight is regular.
Moreover, there is a unique 7€ Tr(H) such that

J(x)=(Tx, x), xeS(H) (8)
Proof. Define a map F on H via
F(x)= {0 for x=0 ©)

[xIIPf(x/[x]l) for x#=0
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Now we shall define a semibounded symmetric bilinear form ¢ defined
on the whole of H. Let M be any three-dimensional subspace of H. As in
(7), we see that f| S(M) is a bounded frame function. Due to Dvure&enskij
(1978), there is a positive Hermitian operator Tys € Tr(M) such that F(x) =
(Tpx, x) for any xe M.

Let now x, ye H. Define t(x, y)=(Tox,y), where Q is some two-
dimensional subspace of H containing x, y. Since any two-dimensional Q
may be embedded into some three-dimensional subspace M, we see that t
is a well-defined symmetric semibounded bilinear form in question. In fact,

if x,ye QinQ;
(Tleay)zt(xsy)z(Tsz’y)

Now we claim to show that ¢ is a bounded bilinear form. Proposition
1 entails that, for any M € £(H), there is a unique finite signed measure
my; on £(M) determined by f| S(M).
1. Let dim M =n=2. Then, for any xe S(M),
n—1
t(x, x)=mpy(M)— % t(x;, x;)
i=1
where x;,...,X,_, is an orthonormal basis in M n P;. Hence t|S(M) is
bounded.
2. Let M =M,®M,, and let 1]S(M,) and t| S(M,) be bounded sym-
metric bilinear forms. We assert that so is t|S(M).
Indeed, let x<S(M). Then x=x,+x,, where x;=Mx i=1,2.
Calculate

t(x, x) = t(x;, x;) + (x5, X;) +2 Re t(xq, x3)

By  assumption, [t(x:, x:)| = K |1x: )%, i=1,2,  where K=
sup{|t(x, x)|: xe S(M))}, i=1, 2.

A bilinear form s(f,g)=1t(f,g)+K(f, g),f,gcH, where K=
—inf{t(x, x): x€ S(H)} is a positive symmetric bilinear form. The Schwarz
inequality implies

Re s(f, g)=[Re s(f, @) ={[«(/, N+ K| fI'N[1(e, &)+ K| gl1}"
and
Re 1(£, &) ={[1(£N+ K| fI)s(e &)+ K |g["}}'*~ K Re(f; g)
Therefore
2|Re t(x;, x,)| = 2[(K; + K)(K,+ K)1"?
This proves that ¢|S(M) is bounded.



300 Dvurecenskij

3. Here we show that ¢ is bounded on S(H). If not, then there exists
e,€ S(H) with t(e,, e,) = 1. Applying part 2 to M, = P, , we see that 1| S(M;)
must be unbounded. Therefore, there is e, L e, | e,]| =1, with t(e,, e;) =1.
Continuing, according to induction, we find after n steps a vector
€,+1, |€nt1ll =1, orthogonal to ey,..., e, (e,..., e, are orthonormal vec-
tors) with t(e,,, €,41)=1. Define M=@f=1 P, , and let my, be a finite
signed measure on F(M) from Proposition 1. Then

<«

Moy (M) = £ my(P) = 3 tleq, €) =00

n=1

which contradicts the finiteness of m,,;, and, therefore, t is a bounded
symmetric bilinear form.
Hence, there exists a unique Hermitian operator T on H such that

fx)=t(x,x)=(Tx,x), |x]|=1
Finally, the finiteness of the weight of f gives us Te Tr(H). W

Theorem 5. Let H be a real or complex Hilbert space of dimension # 2
and let n be any cardinal. Then any n-finite semibounded frame function
with the weight belonging to (—00, cc] and with the finiteness property is
regular.

Proof. 1f the weight W of f is finite, the assertion follows from Theorem
5.

Now let W=+c0. Define a map F on H via (9). Put D(F)=
{xe H: F(x)<o0}. We claim tc show that D(F) is a dense submanifold in
H. Let x, y€ D(F). Due to the n-finiteness of f, we have that there exist
three orthonormal vectors x,, x,, and x; and

0#z=ax;tax,tasx; Lx,y

and Px #0# Py, where P=€Bf=1 P, . Proposition 2 implies that f|S(M),
where M =P, v P, v P, is a finite frame function; hence F(x+y)< . The
n-finiteness of f gives the density of D(F).

Now we shall define a semibounded symmetric bilinear form ¢ defined
on D(F). As in the proof of Theorem 4, we can prove that, for any
two-dimensional Q < D(F), there is To e Tr(H) with F(x)=(Tox, x), x€
M. Defining ¢(x, y) = (Tyx, y) for some two-dimensional Q containing x, y
we prove the theorem. I

Remark 1. 1t is known (see also Proposition 6) that if dim H =2, then
there are finite frame functions that are not regular. On the other hand, not
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any bilinear form with a dense domain determines a frame function. In
fact, let {e,}n-, be an orthonormal basis of a separable Hilbert space H.
Suppose that {e,};-, is a part of a Hamel basis {g,: r€ T}. Fix a unit vector
g,€{g:teTt—{e,}n-;, and define a linear operator B in H via
B(ZteTO ag.)=a,g,, where T, is the finite part of T containing ¢,, and «,
are scalars. The positive symmetric bilinear form t(x, y) = (Bx, B,), x, y € H,
does not determine a frame function, since #(e,, e,)=0, n=1, and
t(g,,, &,) = 1. This example is from Lugovaja and Sherstnev (1980).

3. FINITE SIGNED MEASURES

As has been noted, Sherstnev (1974) generalized the Gleason theorem
to bounded signed measures, remarking that (1) is true even if
sup{|m(P,)|: xe S(H)} <co. Drisch (1979) formulated his result only for
bounded signed measures. In this section we show that for the validity of
(1) both of the above conditions may be weakened.

The positive and negative variations m* and m™ of the signed measure
m are defined as follows:

m (M)=sup{m(N): No M}
m~(M)=—inf{m(N): Nc M}

for any M e £(H). The total variation of m is the map |m|=m"+m".
Some properties of variations of m are:

m”*, m~, |m| are nonnegative.

mt=—m and m =-m".

.If M= N, then m" (M)=m*(N) and m (M)=m (N). .

m* (@5, M) =Y m"(M,) and m™(D,_, M,)=X,_,m (M,).
m*(0)=m~(0)=0.

|m(M)|=<|m|(M) for all M € £(H).

If m: $(H)~ (—0, ], then m+m =m™,

if m: $(H)-[-, ), then —-m+m' ' =m".

R

In conventional measure theory it is known that any finite signed
measure has finite positive and negative variations. This result is not valid
in quantum logics, in general; see also Sherstnev (1974).

Proposition 6. For any integer n =2, there is an unbounded, finite,
signed measure m (in fact infinitely many) on a quantum logic £(H) of a
Hilbert space H, dim H = n.
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Proof. Let dim H =2. Choose a sequence of one-dimensional sub-
spaces {M,},—; which contains no orthogonal pairs. Define a function m
on £(H) via

0 "if M=0
if M=H
m(M)=
n+1 ifM=M,
-n ifM=M,

and on other one-dimensional subspaces M, M™ we choose m(M) e {2, —1}
such that m(M)+m(M*) =1.

Then m is a well-defined, unbounded, finite signed measure.

Let n=3. First we take into account the result of Hamel (1905) that
there exists a discontinuous additive functional ¢: R R, where R is the
set of all reals. For that it is sufficient to find a subset S = R such that every
real number r can be uniquely represented as r=Y;_, B;s;, where s;€ S and
B: is rational. Using the Zorn lemma, we may show that this S exists and
it contains at least two (in fact card S = c¢) numbers s, and s,, where s, is
anirrational. If we put ¢(}.]_, Bia;) = B:,then ¢ is the functional in question.

Let now T# KI, where K is a real constant and I is the identity
operator in H, be a Hermitian operator in H. Define a finite frame function
f(x)=¢((Tx, x)), x€ S(H). We assert that it determines a finite unbounded
signed measure on F(H). Suppose the converse. Then f is bounded.
According to Theorem 4, there exists a Hermitian operator U in H with
F(x)=(Ux, x), xe H, where F is defined via (9). Consequently, F is
continuous.

On the other hand, the set {(Tx, x)}: x € S(H)} is a finite closed interval
[a, b] in R, where a and b are the minimal and maximal proper values of
T; hence a # b. It is evident that there are two rationals @, and a, such
that a5, a,s,€[a, b], a; #0# a,, and a,s,, a,s, are simultaneously either
positive or negative. Also we may find a sequence of positive rationals, {8, }
say, such that 8, B = a;s5,/a,s,. Choose two vectors x,, x,€ S(H) such
that (Tx;, x;) = a;s;, i =1, 2. Define y, = BY?x,, y=B"*x,. Then y, >y and
F(y,)=0+# F(y)=a,#0, which is a contradiction. W

Now we give the following characterization of finite signed measures
on Z(H).

Theorem 7. Let m be a finite signed measure on £(H), where H has
a nonmeasurable cardinal # 2. The following assertions are equivalent:

(i) m is bounded.
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(ii) m is representable via (1).
(iii) m" is a finite measure.
(iv) m~ is finite.
(v) |m| is finite.
(vi) sup{lm(P,)|: | x| =1} <co.
(vii) inf{m(P,): ||x| = 1} > —co.
(vii) inf{m(P,): ||x| =1} > —co.
(viii) sup{m(P,): || x|| =1} < 0.
(ix) There are two measures m; and m, such that m =m; —m,.

Proof. The equivalence of (i} and (ii) follows from the result of Drisch
(1979). 1t is clear that (i) implies (iii).

Due to the identity m(M)=m(H)—m(M™"), M € $(H), we see that
(iii) and (iv) are equivalent, and they are also equivalent to (v). The
proposition (6), from the part describing the properties of variations m™
and m~, proves the implication (v) - (i).

Let (i) hold. Then (vi) is valid, and (vi) implies (vii). The proof of
Theorem 4 entails the validity of the implication (vii) - (vi). Applying the
proof of Theorem 4 to a finite signed measure —m, we prove the equivalence
of (vi) and (viii).

Suppose that (vi) hold. First we claim to show that m is totally additive
[even without the validity of assertion (vi)]. Let {M,: a € I} be a system of
mutually orthogonal elements belonging to £(H) with the join M. Define
a finite signed measure u on the o-algebra 2 of all subsets of a set I via
w(D) =0, u(A)=m(P,., M,), A= L Itis known (e.g., Halmos, 1953) that
there exists a Jordan decomposition for u, u =u ™ —p~, where u” and w~
are positive measures on 2”. Due to Ulam (1930), there are two subsets of
I, D" and D™, with at most countably many elements such that (I — D¥) =

0, w(I-D)=0. Put D=D*uD. Then w(I-D)=
w(I-D)—pu (I-D) and 0=su ™ (I-D)=pu (I-D*)=0. Thus u(I-
D)=0.

Calculate

m(M)=m<€B Ma) =p(I)=p(InD)+p(I-D)=u(InD)

acl

~u(D)= T u(lah= T m(M,)

aeD
It is clear that, for any a ¢ D, p({a}) =0. Hence, m(M) =Y ,_, m(M,).

The total additivity of m implies, in particular, T € Tr(H), where T
satisfies m(P,) = (Tx, x), x € S(H), according to Theorem 4. Then

m(M)= % m(P)= T (T, f) =tr(TM)

icA

where {f;: i € A} is an orthonormal basis in M.
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Finally, let m hold for the Gleason theorem, that is, the formula (1)
is valid. Putting T= T*— T~, where T* and T are the positive and negative
parts of the Hermitian operator T, we see that for m,(M):=tr(T"M) and
my(M)=1tr(T"M), M e ¥(H), we can obtain (ix).

Conversely, (ix) entails (i) immediately. W

Theorem 8. (A. M. Gleason). Let n be a cardinal and let m be an
n-finite semibounded signed measure with m(H) =00 on a quantum logic
Z(H) of a Hilbert space H whose dimension is a nonmeasurable cardinal #
2. Then there is a unique semibounded symmetric bilinear form ¢ with a
dense domain such that (2) holds.

Moreover, if m(@® ., My) <0, then

(@ M)= 3 mon)
acA acA

Proof. Due to Theorem 7, the semiboundedness of m implies that, for
any Pe %(H) with m(P) <o we have sup{|m(Q)|: Q<= P} <, that is, m
is f~-bounded. A simple modification of the proof of Lemma 4.4, from the
paper of Dvureéenskij (1985), gives us the formula (2). W

Remark 3. (i) The assertion of Theorem 10 remains valid even in the
case when m is an n-finite, semibounded, m-additive function on a quantum
logic £(H) supposing the dimension of H is a nonmeasurable cardinal # 2,
and n and m are two cardinals such that n=m, X,=<m.

(ii) We have seen that the semiboundedness of m implies the
f-boundedness of m. I do not know whether the converse implication is true.

(iii) For an n-finite measure it is known (Dvureenskij, 1986} that m
is totally additive and m(M) < iff to M € Tr(H). For signed measures
on nonseparable Hilbert space quantum logic a similar proposition is
unknown (see also Proposition 1). If there are two measures m,; and m, on
Z(H) such that m=m;—m,, then |m(M)|<co iff to M e Tr(H). For a
separable Hilbert space this equivalence is true.
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